www.chemistryhk.com

Please check the examination det	ails below	before entering yo	our candidate information
Candidate surname		Othe	r names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Thursday 24	Jan	uary 2	2019
Morning (Time: 1 hour 15 minut	es)	Paper Refere	nce WCH06/01
Chemistry Advanced Unit 6: Chemistry Labo	orator	y Skills II	
Candidates must have: Scientific calculator			Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 The inorganic compounds **A** and **B** each contain one cation and one anion.
 - (a) A is a green solid.

Two tests were carried out on separate portions of an aqueous solution of A.

(i) Complete the table.

(2)

Test	Observation	Inference
Test 1 A few drops of aqueous sodium hydroxide were added to a sample of the solution of A	A green precipitate formed	The formula of the cation in A is
More of the sodium hydroxide was added until it was in excess	The precipitate dissolved to form a green solution	
Test 2		
Dilute nitric acid and aqueous silver nitrate were added to a sample of the solution of A		The formula of the anion in A is Cl ⁻

(ii) Give the **formula** of the **anion** responsible for the green colour of the final solution in Test **1**.

(1)

(iii) Write the **ionic** equation for the reaction in Test **2**. Include state symbols.

(1)

(b) **B** is a white solid.

Two tests were carried out on separate portions of an aqueous solution of **B**.

(i) Complete the table.

(3)

Test	Observation	Inference
Test 3 A few drops of aqueous sodium hydroxide were added to a sample of the solution of B More of the sodium hydroxide was added until it was in excess		The formula of the cation in B is Zn ²⁺
Test 4 Dilute hydrochloric acid and aqueous barium chloride were added to a sample of the solution of B	A white precipitate formed	The name or formula of the anion in B is

(ii) Write the **ionic** equations for the **two** reactions in Test **3**. State symbols are not required.

(2)

(Total for Question 1 = 9 marks)

2	An ester ${\bf C}$ was hydrolysed by heating with aqueous sodium hydroxide.	
	The resulting mixture was distilled to give an organic liquid ${\bf D}$.	
	The residue was acidified and the mixture purified to produce an organic liqu	uid E .
	 (a) A spatula measure of phosphorus(V) chloride was added to separate port of D and E. They both gave off a gas which produced steamy fumes in air and turned blue litmus paper red. 	
	Identify, by name or formula, the gas produced and the group in ${\bf D}$ and ${\bf E}$ indicated by this test.	(2)
	Gas	. ,
	Group	
	(b) D was oxidised to produce a carbonyl compound.	
	State what additional information this gives about D .	(1)
	(c) In the mass spectrum of \mathbf{D} , the molecular ion peak is at $m / e = 60$. The low resolution proton nmr spectrum of \mathbf{D} consists of three peaks with relative peak areas in the ratio $6:1:1$.	ו
	Draw the structural or displayed formula of D .	
		(2)
	(d) Aqueous sodium hydrogencarbonate was added to a portion of E . There was immediate effervescence.	
	Identify, by name or formula, the gas produced and the functional group	in E . (2)
	Gas	
	Functional group	

(e) In the mass spectrum of **E**, the molecular ion peak is also at m/e = 60.

Draw the structural or displayed formula of **E**.

(1)

(f) Draw the structural or displayed formula of the ester ${\bf C}$.

(1)

(Total for Question 2 = 9 marks)

BLANK PAGE

- 3 This question is about compounds of manganese in different oxidation states.
 - (a) Describe what you would **see** when aqueous sodium hydroxide is added to an aqueous solution containing manganese(II) ions and the mixture is left to stand for a few minutes.

(2)

(b) A sample of an aqueous solution of manganate(VI) ions is prepared from an aqueous solution of manganate(VII) ions and solid manganese(IV) oxide under appropriate conditions.

The relevant standard electrode potentials are

$$MnO_4^- + e^- \rightleftharpoons MnO_4^{2-}$$
 $E^{\Theta} = +0.56 \text{ V}$

$$MnO_4^{2-} + 2H_2O + 2e^- \Rightarrow MnO_2 + 4OH^- \qquad E^{\oplus} = +0.59 \text{ V}$$

$$MnO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons MnO_2 + 2H_2O$$
 $E^{\Theta} = +2.26 \text{ V}$

(i) Choose appropriate standard electrode potentials to calculate $E_{\rm cell}^{\Theta}$ for the formation of manganate(VI) ions in **acidic** solution. Use your calculated value of $E_{\rm cell}^{\Theta}$ to explain why manganate(VI) ions cannot be prepared under acidic conditions.

(2)

(ii) Explain, in terms of standard electrode potentials, why manganate(VI) ions can be prepared in a **concentrated** alkaline solution.

(2)

- (c) An outline procedure for determining the amount of dissolved oxygen in pond water is given.
- Step **1** Shake 100 cm³ of pond water with manganese(II) hydroxide in a closed container. The manganese(II) hydroxide is oxidised to manganese(III) hydroxide.

$$4Mn(OH)_2 + O_2 + 2H_2O \rightarrow 4Mn(OH)_3$$

Step **2** Add excess acidified potassium iodide to the mixture. The manganese(III) ions oxidise iodide ions to iodine.

$$2Mn^{3+} + 2I^{-} \rightarrow 2Mn^{2+} + I_{2}$$

Step 3 Titrate the iodine with 0.0100 mol dm⁻³ sodium thiosulfate.

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

- Step **4** Repeat the titration until concordant titres are obtained.
 - (i) State a suitable indicator for this titration and give the colour change at the end-point.

(2)

Indicator

Colour change from to

(ii) Following this procedure, a mean titre of 16.20 cm³ was recorded.

Calculate the volume of dissolved oxygen, in cm³, in the 100 cm³ sample of pond water at room temperature and pressure.

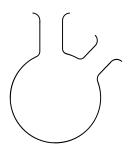
[Molar volume of gas at room temperature and pressure = $24\,000\,\mathrm{cm^3\,mol^{-1}}$]

(4)

(Total for Question 3 = 12 marks)

4 Two students carried out an experiment to nitrate methyl benzoate.

methyl 3-nitrobenzoate


The following outline procedure was used.

- Step 1 Place 5.0 cm³ of concentrated sulfuric acid into a two-necked, round-bottomed flask and cool it to 5 °C.

 Slowly add 3.0 cm³ of methyl benzoate to the sulfuric acid, keeping the temperature at 5 °C.
- Step 2 Place 3.0 cm³ of concentrated nitric acid in a boiling tube and cool it to 5 °C. Slowly add 3.0 cm³ of concentrated sulfuric acid to the boiling tube, while mixing and keeping the temperature at 5 °C. This is the nitrating mixture.
- Step **3** Pour the nitrating mixture into a tap funnel. Place this **vertically** in the round-bottomed flask and put the flask in an ice-bath. Place a thermometer in the other neck of the flask.
- Step 4 Add the nitrating mixture, a drop at a time, to the mixture in the flask. Do not allow the temperature to rise above 15 °C.

 When all the nitrating mixture has been added, leave the mixture for about 10 minutes at room temperature.
- Step **5** Pour the mixture from the flask into a small beaker containing crushed ice.
- Step 6 Filter the impure solid methyl 3-nitrobenzoate under reduced pressure.
- Step **7** Recrystallise the methyl 3-nitrobenzoate using methanol as the solvent.
- Step 8 Dry the methyl 3-nitrobenzoate and find the mass of crystals obtained.
- Step **9** Determine the melting temperature of the crystals obtained.

(a) Give a reason why benzene should not be used in a school laboratory.	(1)
(b) Give a reason why the temperature is kept low in Steps 1 and 2 .	(1)
(c) Complete the diagram to show the apparatus set up at the end of Step 3 .	(3)

(d) The molar mass of methyl 3-nitrobenzoate is 181 g mol⁻¹. However, a small amount of a product with molar mass 226 g mol⁻¹ is also formed if the temperature is allowed to rise above 15 °C in Step **4**.

Suggest the structure and name of a possible product with this molar mass.

(2)

Structure

Name

(e) Give a reason why the methyl 3-nitrobenzoate is separated from the reaction mixture by filtration under reduced pressure, rather than normal filtration.

(1)

- (f) **Student 1** described how to carry out the recrystallisation in Step **7** to obtain a pure sample of methyl 3-nitrobenzoate.
 - Step A Dissolve the impure solid in some hot methanol.
 - Step B Cool the solution in an ice-bath.
 - Step C Separate the crystals using suction filtration.
 - **Step D** Dry the crystals by mixing them with solid anhydrous sodium sulfate in a stoppered boiling tube.

(1)	The student's description of Step A omitted an important detail. State how the method for Step A should be changed. Justify your answer.	
		(2)
•••••••		
(ii)	Describe what the student should do after Step A and before carrying out ! Justify your answer.	Step B.
		(2)
(111)	Give a reason why Step D would not work and describe how the student should dry the crystals.	
		(2)

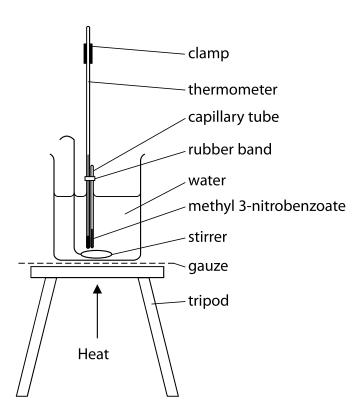
(g) **Student 2** carried out the recrystallisation correctly and obtained 2.28 g of methyl 3-nitrobenzoate from 3.0 cm³ of methylbenzoate.

Calculate the percentage yield of methyl 3-nitrobenzoate.

Data

Density of methyl benzoate = $1.09 \,\mathrm{g}\,\mathrm{cm}^{-3}$

Molar mass of methyl benzoate = $136 \,\mathrm{g} \,\mathrm{mol}^{-1}$


Molar mass of methyl 3-nitrobenzoate = $181 \,\mathrm{g} \,\mathrm{mol}^{-1}$

(3)

(h) The melting temperature of methyl 3-nitrobenzoate is 77 °C.

Describe how the students should use the apparatus shown to determine the melting temperature **range** of a sample of their crystallised methyl 3-nitrobenzoate.

(Total for Question 4 = 20 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

0 (8) (18) 4.0 He hetium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	ted
7 (77)	19.0 F fluorine 9	35.5 CI chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	een repor
6 (16)	16.0 O oxygen 8	32.1 Salfur 16	Se selenium 34	127.6 Te tellurium 52	[209] Po polanium 84	116 have b ticated
5 (15)	14.0 N nitrogen 7	31.0 Pohosphorus	74.9 AS arsenic 33	121.8 Sb antimory 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4 (5)	12.0 C carbon 6	Si Silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	atomic nun but not fu
3 (13)	10.8 B boron 5	27.0 Al aluminium 13	Ga gallium 31	I14.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
		(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercuny 80	Elem
		(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg Sentgenium
		(10)	58.7 Ni níckel 28	106.4 Pd palladium 46	Pt Pt platinum 78	[268] [271] [272] Mt
		(6)	58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	Mt Meitnerium 109
1.0 Thydrogen		(8)	55.8 Fe fron 26	Ru ruthenium 44	190.2 Os osmium 76	Hssium r
		0	54.9 Mn manganese 25		Re rhenium 75	[264] Bh bohrium
	nass ool	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium r	180.9 Ta tantalum 73	[262] Db dubnium s
	relativ ato ri atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium
		(3)	Sc scandium 21	88.9 Y yttrium 39	La*	Ac*
2 (2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium ¹ 56	[226] Ra radium 88
: 3	6.9 Li lithium 3	Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	Cs caesium 55	[223] Fr francium 87

eries
ide s
than
, La

es
Ser
ę
Ē
ţ
•

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
e	ፈ	P	Pm	Sm	En	В	₽	δ	운	й	Ę	χ	3
rium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
58	29	09	61	62	63	64	65	99	29	89	69	20	71
32	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
노	Pa	_	å	Pu	Αm	٤	쑮	ង	E	F	PW	£	ځ
mnin	protactinium	uranium	neptunium	plutonium	americium	arrium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
96	91	92	93	94	95	%	46	86	66	9	101	102	103

